Endosomal sorting by Semaphorin 4A in retinal pigment epithelium supports photoreceptor survival.
نویسندگان
چکیده
Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated endosomal sorting in retinal pigment epithelial cells to support photoreceptor function. In response to oxidative stress, Sema4A switches the endosomal sorting of the lysosomal precursor protein prosaposin from the lysosome to the exosomal release, which prevents light-induced photoreceptor apoptosis. In the absence of oxidative stress, Sema4A sorts retinoid-binding proteins with retinoids between the cell surface and endoplasmic reticulum, by which 11-cis-retinal, a chromophore for phototransduction, is regenerated and transported back to photoreceptors. Owing to defects in these processes, Sema4A-deficient mice exhibit marked photoreceptor degeneration. Our findings therefore indicate that Sema4A regulates two distinct endosomal-sorting pathways that are critical for photoreceptor survival and phototransduction during the transition between daylight and darkness.
منابع مشابه
A point mutation in Semaphorin 4A associates with defective endosomal sorting and causes retinal degeneration
Semaphorin 4A (Sema4A) has an essential role in photoreceptor survival. In humans, mutations in Sema4A are thought to contribute to retinal degenerative diseases. Here we generate a series of knock-in mouse lines with corresponding mutations (D345H, F350C or R713Q) in the Sema4A gene and find that Sema4A(F350C) causes retinal degeneration phenotypes. The F350C mutation results in abnormal local...
متن کاملMorphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملInhibition or Stimulation of Autophagy Affects Early Formation of Lipofuscin-Like Autofluorescence in the Retinal Pigment Epithelium Cell
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is dependent on the effectiveness of photoreceptor outer segment material degradation. This study explored the role of autophagy in the fate of RPE lipofuscin degradation. After seven days of feeding with either native or modified rod outer segments, ARPE-19 cells were treated with enhancers or inhibitors of autophagy and th...
متن کاملPigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal.
Dysfunction of the retinal pigment epithelium (RPE), its loss, or separation from the underlying neural retina results in severe photoreceptor degeneration. Pigment epithelium-derived factor (PEDF) is a glycoprotein with reported neuroprotective and differentiation properties that is secreted in abundance by RPE cells. The "pooling" of PEDF within the interphotoreceptor matrix places this molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2012